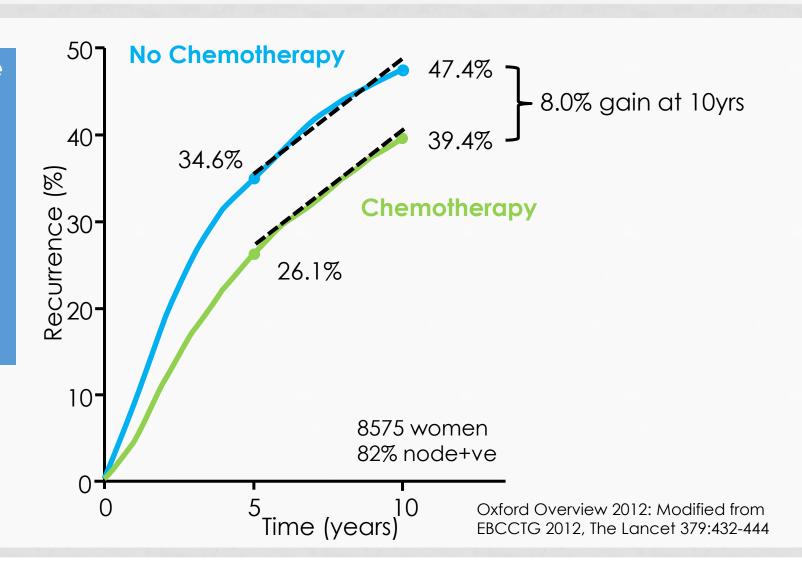


OPTIMAL PERSONALISED TREATMENT OF EARLY BREAST CANCER USING MULTI-PARAMETER ANALYSIS

A trial of a diagnostic test in ER+ve HER2-ve breast cancer

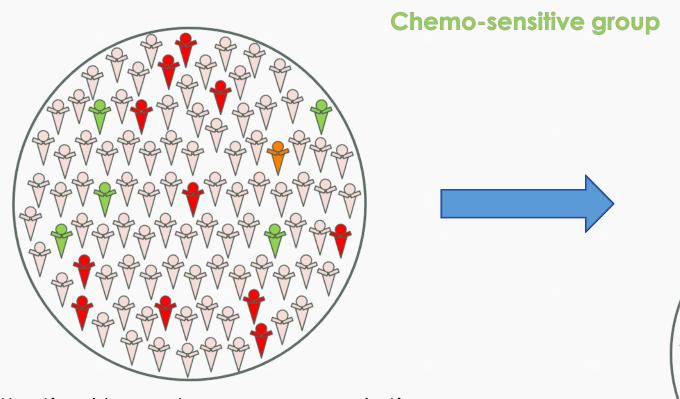
OUTLINE


- Background to OPTIMA
- Multi-parameter assays
- Ongoing trials
- The OPTIMA trial

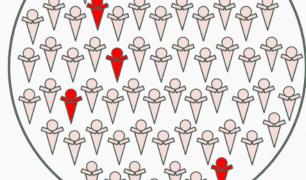
THE BACKGROUND QUESTION

WHO SHOULD WE TREAT WITH CHEMOTHERAPY?

BENEFIT OF ANTHRACYCLINE CHEMOTHERAPY IN EARLY BREAST CANCER


- Chemotherapy has very little if any effect on recurrence after 5years
- Chemotherapy affects BC mortality for up to 10 years
- Gains from modern chemo are expected to be greater than historic regimens <u>but</u> only a minority of patients will benefit

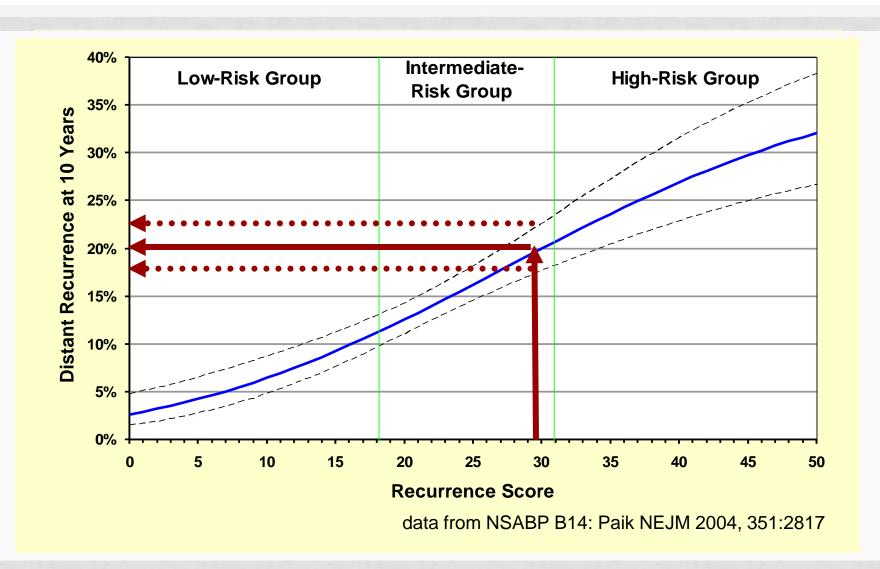
BREAST CANCER CHEMO-SENSITIVITY: THE OXFORD META-ANALYSIS


- Oxford Overview demonstrates that patients with ER-positive breast cancer benefit from adjuvant chemotherapy.
- The <u>relative</u> benefits for chemotherapy are the same for all patients.
 - No identified factors including ER status predict chemo-sensitivity.
 - Little information on tumour grade in the analysis.
- The overall benefit from chemotherapy is modest
 - Patients not destined to relapse cannot benefit from treatment!

CHEMOTHERAPY SENSITIVITY

Hypothetical breast cancer population with one third improvement 10yr BCSS from chemotherapy

Chemo-insensitive group



PROGNOSIS AND PREDICTION

- Prognostic factors give information about likely disease outcome
 - lymph node status
- Predictive factors give information about treatment response
 - BRCA mutation & PARP inhibitor therapy
- Some factors are both prognostic and predictive
 - ER & HER2 status

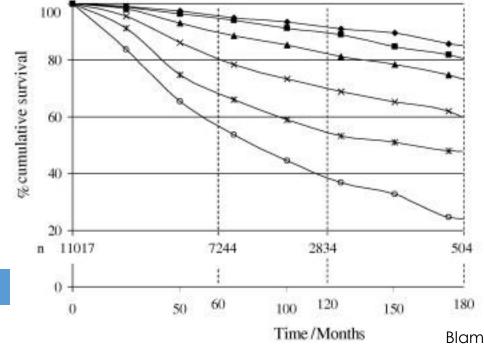
MULTI-PARAMETER ASSAYS

ONCOTYPE DX: RS AS CONTINUOUS PREDICTOR IN TAM TREATED PATIENTS

MULTI-PARAMETER ASSAYS IN UK & EUROPE

Test	Parameters	1° Validation Population	Location
Oncotype DX	16 +5 genes RT-PCR	ER+ (pN0) +ET	Central/ USA
MammaPrint	70 genes array	ER+/- (pN0-1)	Central/ NL
Prosigna (PAM50)	50 +5 genes NanoString	ER+ HER2- (pN0-2) +ET	Local
EndoPredict	8 +4 genes RT-PCR	ER+ HER2- (pN1-3) +ET +CT	Local
IHC4	4 proteins IHC4	ER+ HER2- (pN0-2) +ET	Local/ Central

MPA TESTS ARE ANALYTICALLY "UNIQUE"


prosi	Breast concer gene signature assay	onco <i>type</i> DX	agendia' nmaPrint		IHC4	myriad. EndoPredict	
ACTR3B	KRT5	BAG1	AA555029_RC	GRHL2 (LOC100131053)	RASSF7	ERBB2	AZGP1
ANLN	MAPT	BCL2	ALDH4A1	GSTM3	RECQL5	ESR1	BIRC5
BAG1	MDM2	BIRC5	AP2B1	HRASLS	RFC4	MKi67	DHCR7
BCL2	MELK	CCNB1	AYTL2	IGFBP5	RTN4RL1	PGR	IL6ST
BIRC5	MIA	CD68	BBC3	JHDM1D	RUNDC1		MGP
BLVRA	MKI67	CTSL2	C16orf61 (CMC2)	KNTC2 (NDC80)	SCUBE2		RBBP8
CCNB1	MLPH	ERBB2	C20orf46 (TMEM74B)	LETMD1	SERF1A		STC2
CCNE1	MMP11	ESR1	C9orf30 (TMEFF1)	LGP2	SLC2A3		UBE2C
CDC20	MYBL2	GRB7	CCNE2	LIN9	SPEF1		
CDC6	MYC	GSTM1	CDC42BPA	LOC100288906	STK32B		CALM2
CDCA1 (NUF2)	NAT1	MKI67	CDCA7	LOC730018	STMN1		OAZ1
CDH3	ORC6L	MMP11	CENPA	MCM6	TGFB3		RPL37A
CENPF	PGR	MYBL2	COL4A2	MELK	TSPYL5		
CEP55	PHGDH	PGR	DCK	MMP9	UCHL5		
CXXC5	PTTG1	SCUBE2	DIAPH3	MS4A7	WISP1		
EGFR	RRM2	STK15	DTL	MTDH	ZNF533		
ERBB2	SFRP1		EBF4	MYRIP			
ESR1	SLC39A6	TFRC	ECT2	NMU			
EXO1	TMEM45B	RPLPO	EGLN1	NUSAP1			
FGFR4	TYMS	GUS	ESM1	ORC6L (ORC6)			
FOXA1	UBE2C	GAPDH	EXT1	OXCT1			
FOXC1	UBE2T	ACTB	FGF18	PALM2			
GPR160			FLT1	PECI			
GRB7	MRPL19		GMPS	PITRM1			
KIF2C	PSMC4		GNAZ	PRC1			
KNTC2 (NDC80)	SF3A1		GPR126	QSCN6L1			
KRT14	ACTB		GPR180	RAB6B			
KRT17	RPLP0						

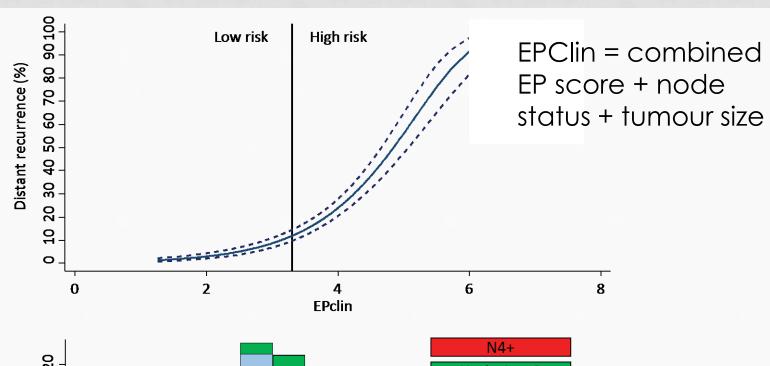
RISK OF RECURRENCE IS INFLUENCED BY BOTH TUMOUR BIOLOGY AND STAGE

Nottingham Prognostic Index = sum of: grade (grade 1 = 1, grade 2 = 2, grade 3 = 3) node status (0 nodes = 1, 1-3 nodes = 2, ≥4 nodes = 3) tumour diameter (cm) x 0.2

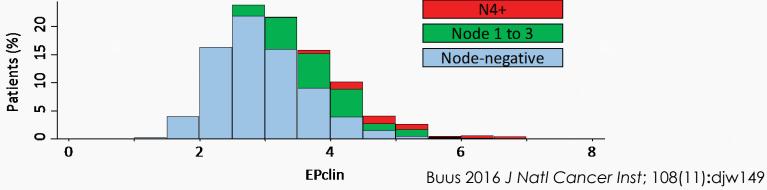
To a 1st approximation tumour grade and stage are independent and equal risk factors

Overall Survival (Kaplan–Meier) by NPI in the ONCOPOOL data set

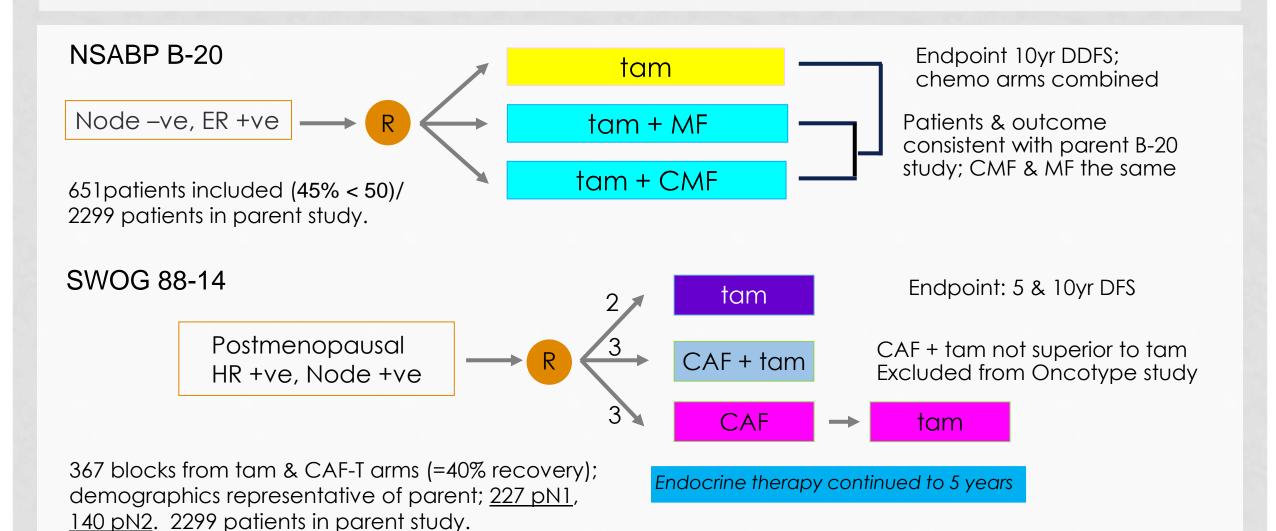
NPI score


- ♦ ≤2.4
- **2.41–3.4**
- **3.41-4.4**
- X 4.41-5.4
- * 5.41-6.4
- ≥6.41

the first multi-parameter test


Blamey 2010: European Journal of Cancer, 46:56–71

INFLUENCE OF NODAL STATUS ON ENDOPREDICT RISK SCORE


928 patients from transATAC

the majority of patients with N+ disease fall into high-risk groups because of nodal status

THE NSABP B-20 & SWOG 88-14 ONCOTYPE DX STUDIES

RESULTS & LIMITATIONS

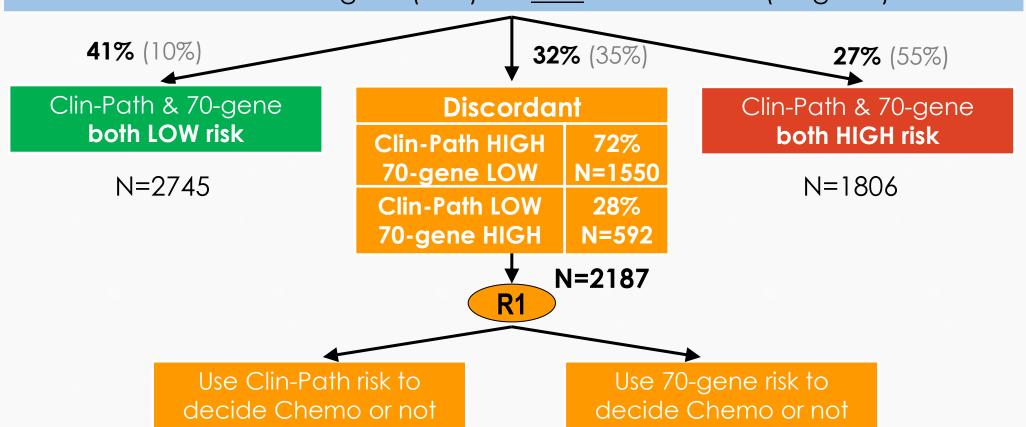
Both studies show chemotherapy benefit is confined to patients with high RS tumours

- Both studies small, especially SWOG 88-14
- Both studies contained HER2-positive patients (12% in SWOG 88-14)
 - B-20 re-analysis to adjust for HER2 2018: result still significant but weaker
 - 88-14 very limited analysis for HER2 non evaluable
- B-20 tam patients formed the main population used for Oncotype DX derivation
 - Artificial increase in goodness of fit
- Neither study preserved original stratifications

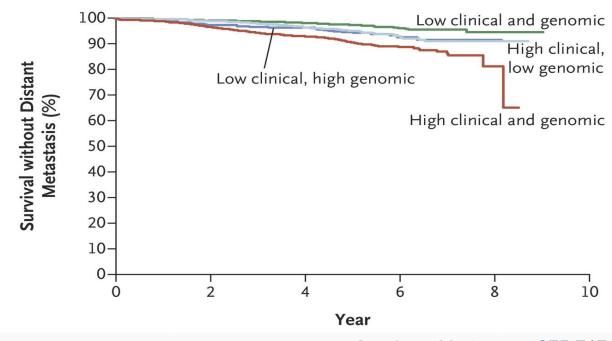
I can see your error bars using Google Earth.

Q: Are the results correct? A: probably but they hardly constitute level 1 evidence

PROSPECTIVE CLINICAL TRIALS


WHY DO WE NEED OPTIMA?

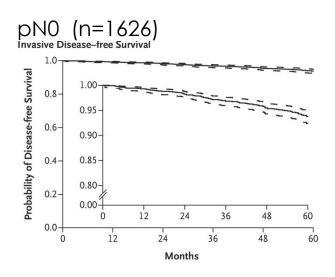
EORTC-BIG MINDACT TRIAL DESIGN


6,693 women enrolled: 79% pN0, 81% ER-pos HER2-neg

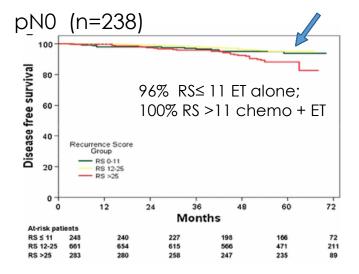
Evaluate Clinical-Pathological (AoL) risk and MammaPrint (70-gene) risk

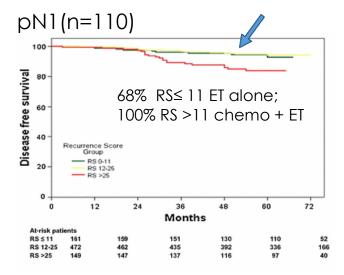
MINDACT RESULTS

- Complex trial, heterogeneous popⁿ (10% TNBC, 9.5% HER2 pos; 21% pN1)
- Insufficient power to compare randomised groups
- Primary EP = 95% chance of 5-yr DDFS >92% for genomic low/ clin high no chemo group: achieved
- Genomic low/ clin high risk 5yr DMFS \triangle chemo vs not = 1.5%
- Genomic high/clin low risk 5yr DMFS \triangle chemo vs not = 0.8%
- All chemo vs not pNS
 - Error in risk assessment affected 16% genomic high/clin low

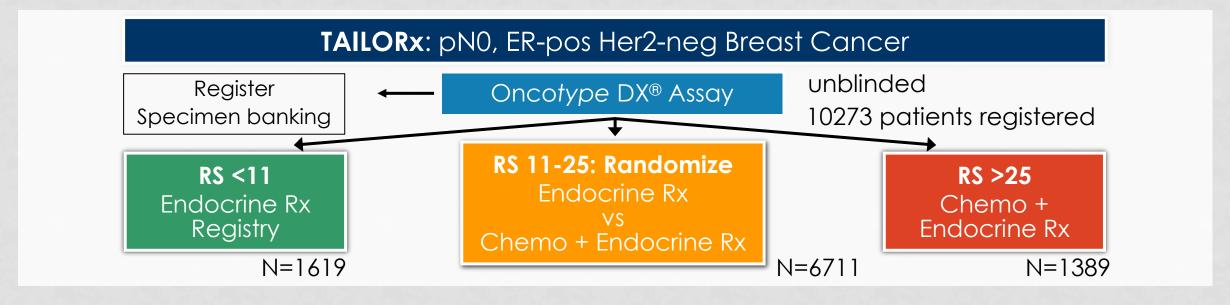


Cardoso 2016 NEJM 375:717


TAILORX & PLANB COHORT STUDIES – ENDOCRINE THERAPY ONLY


- TAILORx pN0 cohort study (RS <11) Sparano 2015 NEJM 373:2005
- PlanB pN0-1 (RS ≤11) Nitz 2017 BCRT 165:573

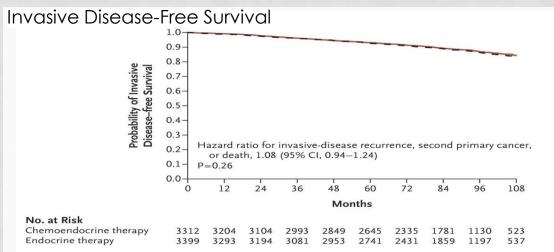
Excellent outcome: confirms prognostic utility of ODX (small pN1 cohort)


TAILORx Five-year IDFS pN0 93.8% [92.4-94.9%]

PlanB Five-year DFS ET alone: pN0 94.2% [90.4–98.0%] pN1 94.4% [89.5–99.3%]

TAILORX

- 1° outcome IDFS (local recurrence exc DCIS, metastatic disease, any death, 2nd cancer)
- 2° outcomes: RFI, DRFI (i.e. BC-specific DFS & DDFS includes BC death), OS
- Statistical hypothesis = non-inferiority of IDFS (failure to demonstrate superiority) 5yr control-arm IDFS 90%, $\Delta 3\% \Rightarrow$ HR 1.322 10% 1-sided significance, 95% power
- Sample size adjusted for 12% non-adherence
- Event-driven analysis threshold 835


Sparano 2018 NEJM doi: 10.1056/NEJMoa1804710

TAILORX RCT CONDUCT

- Trial population & treatment:
 - 33% <50yrs/ 36% pre-menopausal
 - Median tumour size 1.5cm: IQR 1.2-2.0 cm (i.e. 75% ≤2.0 cm)
 - 29% grade 1/ 57% grade 2/ 14% grade 3
 - 72% "clinical low risk"

- Chemotherapy (arm c): 56% TC, 29% anthracycline-non taxane
- 5.4% non-compliance with assignment in endocrine therapy arm/ 18.4% in chemo-endocrine arm
- Analysis at median fu 7.5yrs

TAILORX MAIN RESULT

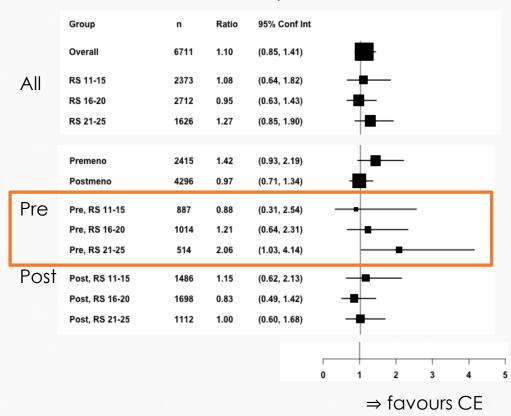
Ď	istant Recurrence	ce-Fre	ee Ir	nterv	'al						
	Probability of Freedom from Recurrence at a Distant Site	1.0 0.9 – 0.8 – 0.7 – 0.6 – 0.5 – 0.4 – 0.3 – H 0.2 – P				nce at a	distant	site, 1.	10 (95%	6 CI, 0.8	5–1.41)
		0.0	12	24	36	48	60	72	84	96	108
						Мо	nths				
	No. at Risk Chemoendocrine therapy Endocrine therapy	3312 3399	3215 3318	3142 3239	3059 3147	2935 3033	2734 2833	2432 2537	1866 1947	1197 1267	554 581

9-year outcome	Hazard ratio (CE/E) [95%CI]	Pre-specified boundary
IDFS	1.08 [0.94-1.24]	1.322
DRFI	1.10 [0.85-1.41]	1.61

Events (ITT)		Endo	Chemo-Endo		
IDFS	5-years	7.2%	6.9%		
	9-years	16.7%	15.7%		
DFRI	5-years	2.0%	1.8%		
	9-years	5.5%	5.0%		

Primary outcome met

TAILORX ANALYSIS: COMMENTARY

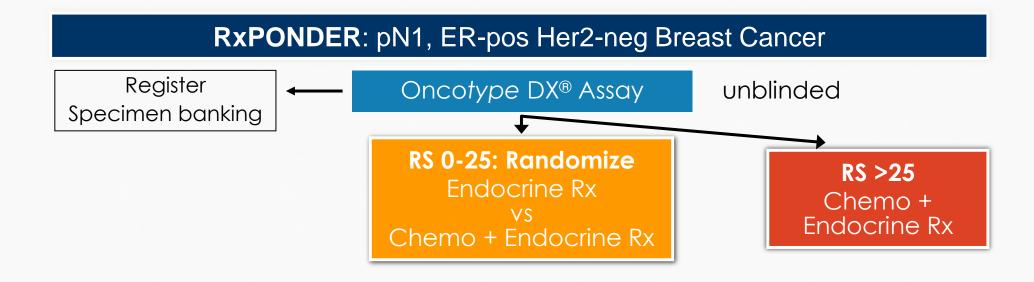

- Number of events, particularly DRFI very small.
- Prolonged f.u. required for analysis (late recurrence not influenced by chemo)
- Likely reflects the very low risk nature of population
- No data on events vs clinical risk available
- More 2nd cancers than distant recurrence: with hindsight IDFS not the ideal primary outcome

Crude number of events in TAILORx (ITT)							
	E: n (%)	CE: n (%)	Difference (E-CE) n				
loco-regional (LR)	67 (15.3%)	62 (15.5%)	5				
opposite BC	44 (10.1%)	48 (12.0%)	4				
DR ± LR	107 (24.5%)	92 (23.0%)	15				
2 nd cancer	145 (33.3%)	146(36.5%)	1				
Death (NOS)	63 (14.4%)	52 (13.0%)	11				
Total	436/3399	400/3312	36				

None of this detracts from the achievement of the TAILORx investigators

EVIDENCE FOR ONCOTYPE DX AS A PREDICTOR OF CHEMOTHERAPY BENEFIT IN TAILORX

Exploratory subgroup analysis: DFRI vs RS + menopausal status


Similar results for analysis by RS + age and for alternative outcomes (IDFS, RFI).

Significant interactions between treatment and combinations of outcome, RS & age ≤50/ pre-menopausal status in some of these analyses.

- Data could be interpreted as showing that RS is predictive of chemotherapy sensitivity in ≤50/ pre-menopausal population.
- Chemotherapy-induced menopause a potential confounder: no data collected.

Sparano 2018 NEJM doi: 10.1056/NEJMoa1804710 fig \$11

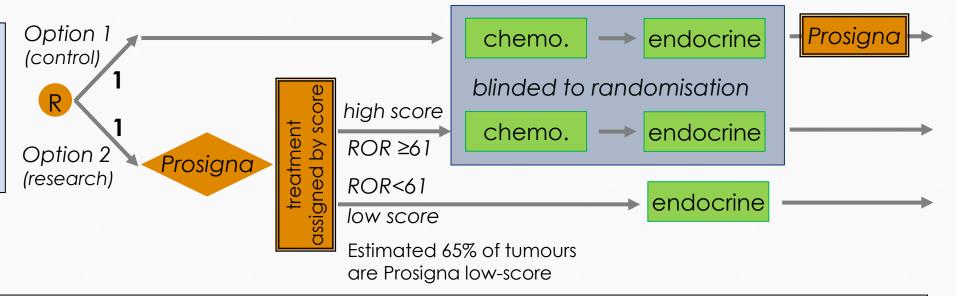
RxPONDER

- Accrual complete
- No information about randomised population
- Same design & issues as TAILORx randomised study
- ? Will report 2020

OPTIMA

WHAT WE EXPECT TO LEARN

ASSUMPTIONS UNDERPINNING OPTIMA


- Multi-parameter assays predict chemotherapy sensitivity
- Tumour stage is prognostic for all patients irrespective of multiparameter assay score
- Advanced stage patients with poor prognosis will not benefit from chemotherapy if the tumour has a low multi-parameter assay score
 - Example few patients multi-node positive low molecular grade tumours will benefit from chemotherapy

OPTIMA MAIN STUDY DESIGN

optima@warwick.ac.uk

Female or Male age ≥40 post 1° excision ER pos, HER2 neg pN1-2/ pN1mi &pT≥20 /pN0 &pT ≥30

1° Outcome = Non-inferiority of IDFS (Δ=-3%, 5yr, control-arm IDFS =85%; HR ≤1.22)

Cost effectiveness evaluation of test-directed treatment

key 2° Outcome = Non-inferiority of IDFS in low-score patients (Δ =-3.5%)

Sample size = 4500 patients (+ OPTIMA prelim) Recruitment period = 60 months

commenced Jan 2017

THE PROSIGNA TEST

- Measures PAM50 gene expression set
- Outputs = Risk of Recurrence Score (ROR-PT) & Intrinsic Subtype
- ROR inputs = Intrinsic subtype, proliferation, tumour size
- Runs on multi-purpose proprietary hardware (NanoString) as "black box" test
 - Versatile, scalable, highly robust & reproducible
- Can be performed in any suitably qualified lab (NHS)
- Validated in several trial data sets transATAC, ABSCG12
- Predictive of response to neoadjuvant chemotherapy

TREATMENT IN OPTIMA

- Chemotherapy pre-specified from a menu of regimens stratified by efficacy.
- Chemotherapy allocation blinded to avoid potential bias in chemo administration.
- Endocrine therapy: standard
 - Al for post-menopausal,
 - tam for men
 - OS + tam/AI for pre-menopausal at trial entry
- Adjuvant bisphosphonates recommended for all.
- Patients may join other studies e.g. AddAsprin

OPTIMA POPULATION

Main Inclusion Criteria

- "Adequate surgery"
- Women or Men
- Age ≥40
- ER-pos HER2-neg (local lab)
- pN1-2 / pN1mi & T≥20mm / pN0 & T≥30mm
- Fit for chemotherapy

Main Exclusion Criteria

- Advanced stage pN3/ IM node involvement
- Neoadjuvant therapy
- Previous IBC surgically treated
 DCIS permitted

PROTOCOL V6 (JULY 2018)

- Clarification of inclusion/ exclusion criteria
 - Bilateral cancers
- Permit short-term neoadjuvant endocrine therapy
 - Neoadjuvant chemotherapy not permitted
- Update permitted chemotherapy
 - Include regimens commonly used in Norway
- Update analysis plan
- Admin changes
 - Make international involvement explicit
 - GDPR compliance with improvement of PIS & consent form and separate data transparency statement

RECRUITMENT: THE QRS

Recruitment into trials of less treatment is difficult!

Explanation to potential participants is different from superiority trials

Systematic study of Qualitative Recruitment Study in OPTIMA prelim & main study: (MRC CONDUCT-II hub, University of Bristol)

Two **iterative** and **flexible** stages:

Phase 1: Understand recruitment (and identify challenges)

- Analysis of screening log data
- In-depth interviews
- Observations of site visits and meetings
- Review study documentation
- Audio recordings of recruitment consultations

Phase 2: Develop and deliver strategies to improve recruitment

- Group training sessions
- Individual feedback
- Tips documents
- Amend patient documentation

TEAMWORK

Think of Optima as a **team trial** involving all the professionals that a patient may

encounter:

Engage all your colleagues, make them feel part of the recruitment process.

Provide assurances that:

- Prosigna gives a better measure of grade than histopathology
- Small delays in chemotherapy start are not harmful.

Secure the commitment of your colleagues to convey a consistent message to patients: "the value of chemotherapy is uncertain"

THE OPTIMA TEAM IS VERY EXCITED ABOUT NORWEGIAN PARTICIPATION

THANK YOU FOR INVITING ME TO YOUR COUNTRY TO PRESENT THE STUDY

UK TRIAL MANAGEMENT

Sponsor

Co-ordinating Centre

Principal Funder

Affiliates:

THE OPTIMA TRIAL TEAM

Oncologists

David Cameron (U Edinburgh)

Helena Earl (Cambridge)

Luke Hughes-Davies (Cambridge) co-Cl

Iain MacPherson (Beatson) co-Cl

Andreas Makris (Mt Vernon) co-Cl

Chris Poole (U Warwick)

Dan Rea (U B.ham)

Bjørn Naume (Oslo University Hospital)

Rob Stein (UCLH/ UCL) CI – **r.stein@ucl.ac.uk**

Surgeon

Stuart Macintosh (U Belfast)

<u>Translational scientist</u>

John Bartlett (OICR, Toronto)

Health Economics

Peter Hall (U Leeds)

Chris McCabe (Institute of Health Economics & U Alberta)

Clare Hulme (U Leeds)

<u>Pathologists</u>

Sarah Pinder (KCL), Jeremy Thomas (Western General, Edin)

Qualitative Research (U Bristol/MRC ConDuCT II)
Carmel Conefrey, Leila Rooshenas, Jenny Donovan

Breast Care Nurse

Vicky Harmer (Imperial Healthcare)

<u>Patient Representative</u>

Adrienne Morgan (ICPV)

OPTIMA Tissue Bank (U Edinburgh)

Tammy Robson & Monika Sobol

Statistics & Trial Management

Janet Dunn (Warwick CTU)

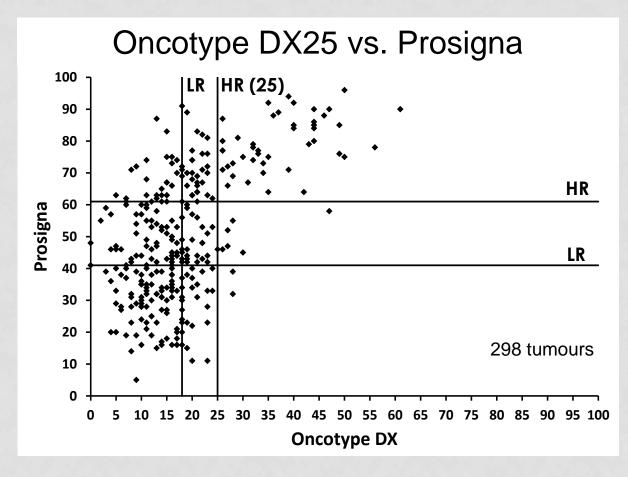

Andrea Marshall (Warwick CTU)

Helen Higgins (Warwick CTU)

Nigel Stallard (U Warwick)

<u>Trial Coordinator:</u> Katie McGuiness/ Georgi Dotchin

optima@warwick.ac.uk



AGREEMENT BETWEEN MULTI-PARAMETER TESTS (DATA FROM OPTIMA PRELIM)

Do the tests tell us the same thing?

AGREEMENT BETWEEN TESTS FOR INDIVIDUAL TUMOURS IN OPTIMA PRELIM

HR = pre-defined "high risk" boundary LR = pre-defined "low risk" boundary

Stein 2016 Health Technol Assess 20(10) Bartlett 2016 J Natl Cancer Inst 108(9)

KAPPA STATS FOR TESTS PROVIDING RISK PREDICTIONS (NOT HIGH VS HIGH)

Kappa statistic (95% confidence interval)	Prosigna (Low/Int)	MammaPrint (Low)	IHC4 (Low/Int)	IHC4-AQUA (Low/Low-Mid)
Oncotype DX ≤25	0.45	0.40	0.52	0.41
(OPTIMA low risk)	(0.34-0.55)	(0.30-0.50)	(0.40-0.64)	(0.31-0.52)
Prosigna (Low/Int)		0.53 (0.43-0.63)	0.39 (0.27-0.50)	0.43 (0.31-0.54)
MammaPrint (Low)			0.33 (0.21-0.44)	0.42 (0.30-0.53)
IHC4 (Low/Int)				0.60 (0.50-0.70)

Interpretation: >0.8 indicates "excellent agreement"; 0.4-0.6 indicates "modest agreement"